Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells.

نویسندگان

  • Konstantinos Stellos
  • Harald Langer
  • Karin Daub
  • Tanja Schoenberger
  • Alexandra Gauss
  • Tobias Geisler
  • Boris Bigalke
  • Iris Mueller
  • Michael Schumm
  • Iris Schaefer
  • Peter Seizer
  • Bjoern F Kraemer
  • Dorothea Siegel-Axel
  • Andreas E May
  • Stephan Lindemann
  • Meinrad Gawaz
چکیده

BACKGROUND Peripheral homing of progenitor cells in areas of diseased organs is critical for tissue regeneration. The chemokine stromal cell-derived factor-1 (SDF-1) regulates homing of CD34+ stem cells. We evaluated the role of platelet-derived SDF-1 in adhesion and differentiation of human CD34+ cells into endothelial progenitor cells. METHODS AND RESULTS Adherent platelets express substantial amounts of SDF-1 and recruit CD34+ cells in vitro and in vivo. A monoclonal antibody to SDF-1 or to its counterreceptor, CXCR4, inhibits stem cell adhesion on adherent platelets under high arterial shear in vitro and after carotid ligation in mice, as determined by intravital fluorescence microscopy. Platelets that adhere to human arterial endothelial cells enhance the adhesion of CD34+ cells on endothelium under flow conditions, a process that is inhibited by anti-SDF-1. During intestinal ischemia/reperfusion in mice, anti-SDF-1 and anti-CXCR4, but not isotype control antibodies, abolish the recruitment of CD34+ cells in microcirculation. Moreover, platelet-derived SDF-1 binding to CXCR4 receptor promotes platelet-induced differentiation of CD34+ cells into endothelial progenitor cells, as verified by colony-forming assays in vitro. CONCLUSIONS These findings imply that platelet-derived SDF-1 regulates adhesion of stem cells in vitro and in vivo and promotes differentiation of CD34+ cells to endothelial progenitor cells. Because tissue regeneration depends on recruitment of progenitor cells to peripheral vasculature and their subsequent differentiation, platelet-derived SDF-1 may contribute to vascular and myocardial regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

بررسی اثر آگونیست -آدرنرژیکی ایزوپروترنول بر بیان miR-886-3p و miR-23a در سلولهای بنیادی مزانشیمی مغز استخوان انسان

Background and Objective: Mobilization of Hematopoietic Stem Cells (HSCs) for transplantation and the importance of -adrenergic signals in induction of this process have been well investigated. However, little is known about the role of -adrenergic signals in mobilization of HSCs and factors influenced by these signals. The Chemokine Stromal Derived Factor -1 (SDF-1) which is expressed by hum...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

Platelets secrete stromal cell–derived factor 1α and recruit bone marrow–derived progenitor cells to arterial thrombi in vivo

The accumulation of smooth muscle and endothelial cells is essential for remodeling and repair of injured blood vessel walls. Bone marrow-derived progenitor cells have been implicated in vascular repair and remodeling; however, the mechanisms underlying their recruitment to the site of injury remain elusive. Here, using real-time in vivo fluorescence microscopy, we show that platelets provide t...

متن کامل

Specification of Hemato-Endothelial-Like Structures and Generation of Hematopoietic Progenitor Cells from Human Pluripotent Stem Cells

 Background and purpose: Human pluripotent stem cells (hPSCs) with the ability to differentiate into adult cells have provided a new perspective for treatment of some diseases. But, the efficiency of differentiation methods to generate hematopoietic progenitor cells (HPCs) is faced with multiple challenges. In the present study, we investigated the formation of hemato-endothelial-like structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 117 2  شماره 

صفحات  -

تاریخ انتشار 2008